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Abstract. Unitary irreducible representations of » independent g-oscillators are used for the
construction of all unitary irreducible representations of the SU,(n)-covariant system of g-
oscillators.

The most important applications of g-oscillators are related to the construction of
representations of g-deformed Lie algebras [1-5]. One of the simplest forms in which
the g-oscillator algebra usually appears is

bbt —gbth =1 (1)

where b and b* are the anmhilation and creation operators respectively, and g is the
deformation parameter, which in what follows is assumed to be a positive real number,
g >0,

In [6] it was shown that the unitary irreducible representations of the algebra (1) can
be classified according to the sign of the definite operator

K =[b,b%]. (2)
Namely, £ > 0 cotresponds to the case of Fock representations of the algebra (1) with
a non-degenerate spectrum of K given for any ¢ > 0 by ¢*, k = 0,1,2,...; K <0

corresponds to non-Fock representations for 0 < ¢ < | with the non-degenerate spectrum
of K being —g2**") &k ¢ Z and » € (0,1). Finally, KX = 0 comesponds to a
degenerate represeniation for 0 < g < 1 with bth = bt = (1 — ¢»)7'1. Let
us mention that there is also an infinite-dimensional degenerate representation (bjn) =
(1=-¢5 Yn—=1), b¥n) = (1 ~¢H)~'in+ 1), n € Z) and a one-dimensional trivial
representation (b = b* = (1 — ¢g*)~'I). We shall not use the latter representations below.

The generalization of the above statements to the case of n pairs of independent ¢-
oscillators b;, b, i = 1,..., n satisfying the relations

bbbt - g%ipth; =8;  q>0
[b:, b;} = (5], b} 1= 0

is straightforward. The representations of {3) will be given as the tensor product of the
representations of each pair of g-oscillators entering into (3).
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First we notice that in any unitary irreducible (infinite-dimensional) representation there

exist operators N; = N;* and real parameters &;, i = 1,...,n (specified below) that satisfy
Vi, Nj] =0
[Ni, o] = [N, B} 1=0  i#j @)
[Ni &l = —b; N, b 1=8}
and
14 l,-qz‘v' 1+ l_QZN;+2
o R N s A
bl = _iTq_l_ b = g (3)

The admissible A; and N; in {4) and (5) can be classified into two classes [6]:

{A) Fock representations when A; = -1 and the eigenvalues of N; aren; =0,1,2,...;
in this case all the values of g > © are allowed; and

(B) non-Fock representations when A; > 0 and the eigenvalues of &; are all the integers
n;; in this case only 0 < g < 1 is allowed.

Let us note that the non-Fock representations of two pairs of g-oscillators, b, b and
b, bt satisfying

are unitarily equivalent if & = g#A with k being an integer number. Furthermore, by putting
bo = (1 + Ag¥¥ 112y bF = b¥(1 + agH )12
we obtain a non-Fock pair of g-oscillators which satisfy the relations

I
1-g?

bobf = biby =

and which thus corresponds to the degenerate case ig = 0. We note, however, that the
mapping & — by, b* — bY is not unitary.

In this paper we shall use the unitary irreducible representations of the algebra (3) to
construct all the irreducible representations of the SU,{n)-covariant system of g-oscillators.
A general classification of the latter representations was given in [7] by using first-order
differential calculus on a g-plane. However, as we shall see below, the construction of such
representations in terms of g-oscillators can be performed in the simplest form. In addition,
we believe that the approach presented here can also be used for the realization of more
general systems such as 2 supercovariant system of g-oscillators [8].

Let a;, a,-'" , £ =1,...,n be a system of g-oscillators satisfying the SU,(n)-covariant
algebra:
aa = qaa, afaf = qala’ P<j
yaf =qdfa; i ] )

aaf — g*atar = Miy
where 0 < g < 1, and

#
A5=1—(1—q2)2a:ak i=1,....n
= (7

An-}-] =1.
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From equations (6) and (7) the following basic relations for the operators A; can be deduced:

AJ"H — Aj = (I — qz)a}"aj ®

A — g’ A = (- gDgaf
and
Aja,j' = a;Aj a,-cAj = Ajak j >k (9)
Ajaf = g*af A; apA; = g Ajay J <k
To construct the irreducible representations of (6) and (7) we shall consider four cases.
(i) Assume that A;; = R, > 0 and let us define
a; = Fi(N;,.. )b, a" = b F(N;,..) (10)

where b;, b satisfy the g-oscillator algebra (3) and the N; satisfy the relations (4). The
dots in (10) indicate the dependence of the functions F; on N;, j 7# 1 and hereafter will
be omitted. Then according to (4) and (5)

1 ‘ki ZN+2
aat = 29 g2y
-2 (11)
+ 1+;Li42Nr 3
afte, = P RN~ 1)

where the values of A; and N, are determined in correspondence with the representation
{Fock or non-Fock) chosen for the g-oscillators b; (see statements (A) and (B) after
equation (5)).

From relations {9) and definitions (10), it is easy to conclude that

Rivi = Ripi(Nig1, .5 N (12)
Indeed, since the operator A;y; commutes with g; and aJ,T" for j = 1,...,1 (cf equations (9}),
then it cannot depend on N;. Therefore, A;y1 = Ajpy (Wigq, ..., Ne). Let us now assume
that the g-oscillators b; are given in the Fock representation, i.e. X; = —1. Then substituting
relations (11} into the last equation in (6) we obtain the recurrence relation

1- 2N, +2 1— 2N,

'IETF;z(Ni) - QZT‘_‘{?—ZF?(NE =D =Ain (13}
which has the general solution

2IN;+1
cg™i

FEND = Ao+ Tz (14)

where ¢ is a constant.
In particular, for ¢ = 0 we obtain the solution

Fy = Ri1(Nigg, .o Nap). (15)
Recalling that A; = R,-2 > 0, we obtain from (8), (11) and (15) the recurrence relation

R = q"Rin1. _ (16)
Since by definition R, = 1, finally we have the solution

Fi = Rygy = gt )
found in [8] provided that A; > Ofori=1,...,n

(i1) Let us now consider the case A;4) = —R?_H < 0 and define

& =BG:N)  af = Gi(Nb, {18
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where b;, bjf satisfy relations (3)~(5) and the dependence of the functions G; on Nj, j #
i, j# 1 has been omitted,

Then from (5) it follows that
b 1+ ag*
e Y

IN;+2
;"a,- = 1_'1'_"‘_":7__52( ND.
1-g?
Assuming that the operators b;, b are Fock oscillators (i.e. A; = —1) and substituting (19}
into (6) we arrive at the relation

1 — 2N; 1__ 2N+2
— - Gl - -

with Ajy = A1 (N, .00, Na).
The general solution of (20) is given by

aia GHN; - 1)

(19)

GH(N;) = Aigt (20€)

2 —2N,-2 cg™

GiiN) =—¢7" " + = (21)

where ¢ is an arbitrary constant.
Since A;41 = —RZ, <0, for ¢ =0 we have

Gi =g " Rt (Nise1s o .o N, (22)
Furthermore, from relations (6) we obtain the recurrence relation

Ri =gV 1Ry (23)
IfA; «Qfori=1,..., p <n, then from (22) we find

G = g WA= Wit DR (N L, N) (24)

valid for i = 1,..., p — 1, where R, is determined by A, = —Rf,.

(iii) Let us assume that A;4y = R?,, > O and that the g-oscillators b; are given in the
non-Fock representation:
1+ g2g*M
1-4%

1 + EZQ.ZNJ'['Z-

+p —
bib = =

b,b+ eSS

I

(25)

where A; = 2 = 0.
Defining a;,af’ as in (10) and repeating all the steps from case (i) we find F; = R;4;.
Substituting ¢; and 2; into equation (8) and using (25) we obtain
Ay = —e2g™ipL, <0 (26)

Thus, we conclude that the non-Fock g-oscillators b;, b allow us to switch from pattern
(i) to pattern (ji) provided that & # 0. If £ = 0, then we arrive at A; = 0.

{(iv} Assume that A, ; = 0. Then we can take ¥, b;" in the non-Fock representation
with &; = 0 satisfying
1

1—g%
Defining a; = F;(N)b;, a} = b} Fi{(N,), we obtain from (6) the equation

FHN) — g* F(Ni-1) =0 (28)

bb; = bibf = @n
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which has the solution

Fi =EWNis1, ..., Npdg™. (29)
Using A;qy = 0, finally we find from equation (8)
Aj = =g 2P = 22 2, 30

Therefore we see that this case leads again to case (ii).

Thus, from the four cases considered above we conclude that the most general pattern
for the classification of all irreducible representations of the SU,{(n)-covariant system of
g-oscillators defined by (6} is the following,

Let b;, bf’, i =m-+1,...,n be Fock oscillators and define q;, a?’ as in (10). Then
according to case (i), Agyy = g> W t-tM) 5 O fori=m+1,...,n—1and Ap =1 by
definition.

Now if b, is a degenerate non-Fock oscillator with £ = 0, then from case (iv} we
have Apyr = 0 and A,, < 0f. Therefore, the use of a degenerate oscillator 5, allows
us to switch from positive to negative values of A; and case (ii) implies that A; < 0 for
i=m-—1,...,1if b; are Fock g-oscillators.

Finally if b,, is a non-Fock oscillator with £ 3% 0, then, according to case (iii), Apyqq > 0
and A, < 0. Therefore we arrive again at case {ii), where for the Fock g-oscillators
b1, by, .., bppqonehas A; <0, i=1,...,m—1.

We notice that the above construction exactly reproduces all the unitary irreducible
representations of the SU,(n)-covariant algebra (6) found in (7].

Let us now consider some simple illustrative examples of the use of the unitary
irreducible representations of the g-oscillator algebra (3) for the construction of g-deformed
algebras. We introduce the operators

a; =g N p, a = bFg~Mi? i=1,...,n (31)
where the operators b;, b satisfy relations (3). The definitions (31) lead to a system of »
independent g-oscillators a;, g which satisfy the relations

aef —gaiam=g™ (32)
(N, a:] = —ay [N, ]l = a;

where N; is defined by [K:[ = {[b;, &1 = ¢*®*% and y; are real parameters specifying
the g-oscillator representations in question (y; = { in the Fock case, whereas y; € (0, 1) in
the non-Fock case).
We shall take for simplicity two independent pairs of g-oscillators &, a', i = 1,2
given by (31) and (32) and construct the following set of operators
J* =ata, J-=afa
JO = 1Ny — Ny).
Now if we assume that both pairs in (31) are in the Fock representation, we obtain from
(33) the SU,(2) algebra [1,2]

(33)

1% J%] = £J= [+, 771 = [27°, (34)
where [x); = (¢* — ¢7*)/(g — ¢~"). The Casimir operator for (34) is given as
2 - 2
C=[1+3), +I7 I =M+ No + D], (35)
1 In principle one can add some Ay =0,i=m, ..., p+1 (m > p) and then, using &, as a degenerate non-Fock

g-osciliator, switch to the case A, < 0.
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Restricting the Fock space
F=llnm, ) n.na=01,2,...}

to invariant subspaces given by n; 4521 = n with n being constant, we obtain the unitary
irreducible representations of SU,(2).

When both pairs of operators in (31} are given in the non-Fock representation, then
from (33) we obtain the SU,(1, 1) algebra [9]

O, ¥l =2J%  [JF, U] =209, (36)
with the Casimir operator
C= [+ 1 — I T =—[{Ni + M+ pi+ 1 + D] (37)

where {x}, = (¢* + ¢7*)/(g — ¢~"). In this case the irreducible representations are again
specified by the condition #; + n2 + I = n with n being constant.
If instead of (33) we use the operators
Jt=ata; J™ = may
J= LN+ N+ 1)
then one can conclude that when both pairs of g-oscillators are given in the Fock

representation, the operators (38) satisfy the SU,(1, 1) algebra (36) with the Casimir operator
defined as

(38)

C =[N, (39)

In the case of non-Fock g-oscillators, the same algebra (36) holds for the operators (38).
In the latter case the Casimir operator reads as

=~ (AW - Mt n-m}. (40)

From these exampies we see that the operators defined in (33) and (38) with Fock
g-oscillators lead to unitary irreducible representations of SU,(2) and to a (discrete) series
of representations of SU,(1, 1) respectively, both with positive Casimir operators. These
representations have in the limit ¢ — 1 canonical realizations in terms of standard
oscillators. The representations (33) and (38) with non-Fock g-oscillators both lead
to representations of SU,(1,1) from (principal) series with negative Casimir operators.
We stress that the latter non-Fock representations have no classical analogies since they
disappear for ¢ — 1 {e.g. € — —oo in this limit, see equations (37) and 40)).

Finally let us mention that some other possible applications of g-oscillators may
concern the construction of the representations of superunitary SU, (m|n) systems (the Fock
representations in this case were found in [8]) and superalgebras like asp, (1) and (2)
(see e.g. [10] for the Fock case). We believe that the construction of the representations
of g-deformed ({super)algebras can also be performed in the convenient framework of g¢-
oscillators along similar lines to the ones presented here.
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